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Introduction

• Is NOT!:
– Justification to design in-house or to 

procure commercial software product
– Justification for project resources
– Justification for Return on Investment
– The only process for software 

application design
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Introduction (cont.)

• Assumes:
– Management buy-in
– Justification and decision has been 

made to design in-house software 
application

– Adequate resources are available for 
software project lifecycle
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Introduction (cont.)

• Historical Background
• Project Initiation
• Project Issues
• Software Implementation
• Software Tools
• Lessons Learned – DOs and DON’Ts
• Summary
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Historical Background

• STS – Sample Tracking System
• First attempt to integrate multiple 

spreadsheets, databases and paper 
records to electronic records

• Records stored in multiple locations and 
formats

• Central file server, early 1990’s technology
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Historical Background (cont.)

• STAR Phase I – Sample Tracking And 
Reports

• To improve on the shortfalls of STS 
system
– Add more data fields to the data entry 

screens
– Add functionality to meet changing 

business needs
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Historical Background (cont.)

• To improve on the shortfalls of STS 
System (cont.)
– Improve data entry integrity using 

validated lists
– Add audit trail function to track entry 

and changes
– Add system and data security
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Historical Background (cont.)

• Original project was a “stand alone”
application that morphed into an integrated 
network of applications
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Historical Background (cont.)
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Project Initiation

• Facilitated sessions where all stakeholders 
provided input in 8-hour sessions

• Consensus-driven, all the stakeholders got most 
of their needs met

• After 2 sessions, all “requirements” were 
gathered

• Programmers went away and created end product 
to meet requirements with very little interaction 
or feedback
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Project Issues

• Institutional culture
– No bottom line for $$$ with dedicated 

programming staff versus job shop
– Data owners did not want to distribute 

data electronically
– Business requirements driven by audit 

findings
– Did not have full management buy-in
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Project Issues (cont.)

• End user issues
– Multiple management chains

• No single authority for decision making or path for 
conflict resolution

• No accountability
– Minimum computer literacy level not defined
– Availability of resources not consistently allocated

• PCs vs Mac vs terminal servers (software, hardware 
and operating systems)

• Personnel for participation in project development
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Project Issues (cont.)

• Requirements often not realistic and/or measurable
– Ex. “Easy to use”, “Intuitive”

• Led to different levels of expectations
• All requirements had same priority ranking

– “must have”, “should have” or “nice to have” were 
ranked with the same priority of importance

– Majority of requirements were “nice to have”
• “fantasy” because these were NEVER used by 

requesters
• Technology was not available
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Project Issues (cont.)

• Stakeholders required data entry screens to use the “One 
size fits all” approach
– Industrial Hygienist, Health Physicists, Health and 

Safety Technicians use the same screens
– Various sampling types were entered using the same 

data entry screen
– Strong resistance to have multiple screens with specific 

functional needs
– Functionality requirements of each stakeholder were 

mutually exclusive
• Ex. - one data field required by one user would not 

function for any other user
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Project Issues (cont.)

• Lack of ownership of the application resulted in 
finger pointing when application had problems

• Data entry screens based on existing 
paper/manual formats
– Inefficient use of screen capability
– Users were accustomed to “scratch pad”, line-

out and write-in any changes in paper margin
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Project Issues (cont.)

• No requirements specified by stakeholders for 
data output
– Part of culture was to enter “nice to have” data
– Database was considered data storage
– No thought was given to meaningful data 

retrieval
– Data for reporting was hand-entered into 

personal spreadsheets, “This is my data and 
not for anyone else to see”
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Software Implementation

• Hardware limitations
– Due to high costs, desktop computers were 

not widely available
– PCs, Macs and VAX/VMS terminals using 

central server technology
– Developed to lowest common denominator 

(vt220 monitor)
• Software limitations

– Terminal emulators for multiple OS platforms 
with multiple versions for each OS
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Software Implementation (cont.)

• Affects on return on investment for hardware and software
– Higher costs to support multiple hardware and software 

platforms
• Need more support personnel with expertise

– High costs for programmers to create a specific data 
entry screen for each platform and OS version

• System migrations cannot be accomplished for 
legacy systems with unsupported hardware and 
software

– Large resources required to test for each platform/OS 
version for a given screen

• Often for a single user
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Software Implementation (cont.)

• Lack of management buy-in
– Testing had low participation

• Participating testers got their needs
• Users who opted not to test were most unhappy 

when software released for production user
– Training was offered

• When optional, few participated in training
• When training was mandatory, complaints, selective 

comprehension usually had same result as optional 
training
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Software Implementation (cont.)

• Software documentation
– Documentation provided
– Rarely used, most user “wing it”
– Not enough resources to keep documentation 

current
• External data input and output

– Analytical laboratories
– Result reports
– “paper form” model does not address 

electronic data processing, “free type” data 
entry not optimal for queries
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Software Development Tools

• CASE Tools (Computer Aided Software 
Engineering)
– Provided easy mechanism for multiple 

developers to keep same “look and 
feel” for each screen

– Repository for documenting 
programming parameters for 
consistency
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Lessons Learned – DOs and DON’Ts

• DON’T try to please everybody
– Do use ranking system for requirements

• DO use K.I.S.S. philosophy
• DO have project manager

– Knowledgeable about business requirements
– To enable executive decisions when there are 

conflicting issues
– Has trust of senior management and credibility with end 

users
• DO use formal project management methodology

– Ex. IEEE
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Lessons Learned – DOs and DON’Ts
(cont.)

• DO consider external data input and output
– DON’T design a “garbage in, garbage out” program
– DO design database to provide structure for meaningful 

generic data retrieval (Ex. - reports)
• DO have minimum standards

– DON’T have multiple hardware platforms
– DO have common software

• Browsers
• Operating systems
• Versions

– DO have minimum computer literacy levels for end 
users
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Lessons Learned – DOs and DON’Ts
(cont.)

• DO have formal testing plan
– DON’T release without documentation that 

acceptance criteria was met
– DO follow standards for testing and 

documentation (Ex. IEEE, NQA-1, etc)
• DO have a training program in place

– DON’T allow access to application to users 
that have not completed training program

– DO keep training material updated
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Lessons Learned – DOs and DON’Ts
(cont.)

• DO apply Software Quality Assurance principles
• DO use formal documentation (Ex. IEEE 

standards for guidance)
– DO document application requirements (data 

input, output usage and data sharing), also 
minimize “change orders”

– DON’T perform maintenance requests without 
documentation

– DO document “bug” fixes
– DO perform verification and validation
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Conclusion

• Old issues with development never go away, just 
return in different form
– What is state of the art today is tomorrow’s 

legacy
– Address hardware and software issues
– Provide adequate support personnel
– Ensure management support level
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Conclusion (cont.)

• Keep an open mind, anticipate issues
– New applications merge with current 

applications
– New business requirements may require 

modification of current software or migration 
to new system

• Remember and apply lessons learned
– Don’t “reinvent the wheel”
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Questions

Chuck Chen
925-422-8098
chen2@llnl.gov

Tim Lowe
925-422-8430
tlowe@llnl.gov


